| RSS
深圳电器感厂家
您当前的位置:电感器制造商 > 行业动态

厢式半挂车空气悬架系统的Simulink仿真分析

来源:    作者:     发布时间:2015-04-07 20:46:24     点击数:

一、动力学模型

  研究分析的对象为整个厢式半挂车的挂车部分,其副车架为双轴。由于车身振动较小,忽略其横向水平振动,而着重考察对平顺性影响较大的垂直振动和纵向角振动。挂车簧功率电感下质量的振动是高频振动,可以认为左右车轮的输入是独立的,不考虑其相互影响。假设厢式半挂车车辆左右对称且左右轮的路面激励相同,并作如下假设:(1)将车身视为具有集中质量的刚体;(2)牵引板与牵引座之间刚性连接,并用线性弹簧代替悬架,悬架刚度与阻尼分别是位移和速度的一次函数;(3)将牵引车后轴,副车架前后轴及车轮简化为非簧载质量,用线性弹簧代替弹性轮胎,建立6自由度(用z1~z6表示)半挂车空气弹簧动力学模型,q1、q2、q3 表示路面激励,如图1所示。符号含义及具体使用参数见表1。

表1 半挂车的动力学简化模型参数

半挂车的动力学简化模型参数

  计算中模型的悬架系统的刚度和阻尼系数与轮胎刚度和阻尼系数均取左右两侧之和。

  二、数学模型

  (一)微分方程

  根据给出的动力学模型,利用拉格朗日方程建立数学模型,其通式为

  微分方程
扁平型电感 式中L为拉格朗日函数,L=T-V,其中T为系统动能,V为系统势能;D为系统的耗散能;Q为系统的广义力。

  具体各项的表达式如下:

具体各项的表达式

  副车架前悬架后支撑位移z22的计算要考虑悬架前支撑位移z21的影响和前悬架质量块m2位移z2的综合影响,根据几何关系有

几何关系

  同理可以得到副车架后悬架后支撑位移Z32。

副车架后悬架后支撑位移

  将式(2)~式(4)代入式(1)得到

代入式

  式中位移 分别为位移、速度和加速度列向量。
M、C、K分别为质量、阻尼和刚度矩阵。Q为路面激励力的列向量,文中假设轮胎阻尼为0,则 。

  (二)状态方程

  将微分方程转换成状态空间下的方程,即

状态空间下的方程

  式中x是半挂车的状态向量,12个分量分别表示6个自由度处的位移和速度;u是输入向量,表示车辆处的路面位移激励;y为输出向量,设置为6个自由度处的位移和速度;A为系统矩阵;C为输出矩阵,设置为一个12阶的单位矩阵;D为控制矩阵,由于没有直接输入对象,设置其为3×12阶的O矩阵。

  三、仿真模型

  建立的微分方程及状态方程要进行多次计算并对结果进行各项分析处理,工作量非常大。用Mat2lab所具有的功能,将其转化到Matlab/Simulink/Dsp环境下,从而进行直观有效的分析。

  在 Matlab/Simulink环境下,一般用基本方框图的数学运算关系连接系统的搭建。考虑到本模型状态方程的特殊性,采用直接应用状态方程模块的方法进行仿真,只需将微分方程的参数代入,设置并添加必要的激励和输出显示等环节即可仿真。为了体现计算的实时性,多数结果数据和曲线可以直接从实时仿真模型中看到,而无需再处理,具有很好的实时性。

  为了便于与试验对比,以验证模型的正确性,将簧上质量的垂直振动和纵向角振动转化为前后轴上方底板处的垂直振动,同时对加速度信号求自功率谱密度及加速度均方根值,以便于研究分析。由于模型较大,建立了几个子系统。

  (一)时域输入部分

  用于随机路面输入的信号可以用两种方法获得,一种是根据有理函数标准电感器的工作原理谱的输入方法模拟时域信号,另一种是直接利用获得的道路时间历程信号。图2、图3中输出 1、输出2和扁平型电感输出3分别作为牵引销处、副车架前轴、副车架后轴处的时域输入。两种不同来源的信号输出模块的内部处理结构分别如图2、图3所示。 1

我们知道电容器两端的电压不能突一体电感器打样 变;对电感而言则是电感器两端的电路不能突变;这一点电容器和电感器又是有所不同的。 当流过电感器的电流大小发生改变时;电感器两端要产生一个反向电动

2) LC输出滤波器 首先选择交越频率(fC)。因开关噪声缘故,fC大于10 kHz时要求无噪声布线,难于设计。故不推荐在较高的频率交越,直接选定电感器生产商fC为10 kHz。如果我们假定由fC、

摘要:目前FIR滤波器的一般设计方法比较繁琐,开发周期长,如果采用设计好的FIR滤波器的IP核,则开发效率大为提高。本方案基于Altera公司的CycloneⅡ系列芯片EP2C8Q208C8N,首先利


上一篇: 评估用于系统级芯片集成的各种处理技术方案
下一篇:功率电感器
来顶一下
返回首页
返回首页
相关文章
推荐资讯
电感数字转换器
电感数字转换器
相关文章
栏目更新
栏目热门