医疗机器人是近几年在多学科交叉领域中兴起,并越来越受到关注的机器人应用前沿研究课题之一。医疗机器人将机器人技术应用到医疗领域,极大的推动了现代医疗技术的发展,近年来随着MEMS(微电子机械系统)的发展,大大促进了医疗机器人的微型化,可用于人体内诊断和治疗的微型机器人的研究越来越受到重视。内窥镜是当前体内诊疗的主要工具,线缆式微型机器人内窥镜系统和无线药丸式微型机器人内窥镜系统是肠胃道微创诊疗发展的两个最主要方向。文章介绍依据驱动类型划分的具代表性的线缆式内窥镜诊疗机绕行电感器器人和无线药丸式内窥镜系统的研制情况,分析内窥镜诊疗微型机器人的相关技术难题和发展趋势。
(一)线缆式内窥镜系统
线缆式微型机器人内窥镜系统利用可以主动运动的引导头引导进入人体腔道,避免了手动插入造成的软组织损伤,其关键技术在于主动引导头的微小型驱动器的研制。目前体内医疗机器人微小型驱动器的类型大致有以下几种:电磁驱动型、形状记忆合金型(SMA型)、气动型和压电型。
1.电磁驱动型。
上海交通大学研制了一功率电感种用于肠道检查的内插件电感器窥镜微型机器人,基于尺蠖运动原理,驱动器为一种基于电磁力的微小型蠕动驱动器, 由头部、尾部、驱动单元、弹性模等组成,长64mm,外径7mm,重9.8g,通过调整驱动电压的频率来调节其运行速度,头部可携带CCD等1器件,将肠道的图像传输出来。机器人各个单元之间由二自由度的铰链连接,使它可以适应蜿蜒盘曲的肠道。
2.形状记忆合金型(SMA型)。
日本东北大学的江刺研究室研制了一种采用形状记忆合金(SMA)作为驱动器的自主式医用内窥镜,利用MEMS技术,研制适合于人体管道环境如结肠中动作的装置,是一种整支导管可独立弯曲的多关节驱动的内窥镜,导管直径为1.2mm,每个关节的驱动器采用形状记忆合金驱动器,通过电阻值反馈控制法,可对导管实现自动柔顺且安全的操作。这种能动型内窥镜可平稳地插入如S状结肠等形状狭小复杂弯曲的管腔内,能够携带成像照明光学系统、前端物镜粘附物清除装置等自动进入人体完成体内诊断和体内微细手术等功能,如图所示。
形状记忆合金能动型内窥镜
3.气动型。
加州理工学院A。brett Slatkin等以纤维内窥镜为基础研制了气压蠕动式内窥镜系统,直径为14mm,主要由信号控制引线、气动执行器导管和光纤束组成,气压动力源分为高压和低压两部分,夹嵌和伸缩单元在气压的驱动下撑紧肠壁和伸缩,产生类似蚯蚓的蠕动。
意大利Mitech实验一体成型电感室P.Dario与比利时Leuven大学的J.Peris等人利用蚯蚓蠕动性原理研制了一种肠道内窥镜式机器人,采用压缩空气驱动,机器人本体由3个气囊驱动器组成,中间的驱动器能够轴向伸缩,产生轴向推动力,推动机器人前进。微机器人直径15mm,收缩时长42mm,伸胀时长80mm,载有CCD微摄像头,两个夹嵌和一插件电感个伸缩执行器在气压分配器的控制下实现在肠道中的蠕动。机器人的头部装有作业工具、摄像机及照明装置。用来在肠道内进行检查及手术操作,如图所示。
肠道内窥镜式机器人
4 压电驱动型
1995年日本Deson公司研制了基于惯性冲击式驱动原理的微型机器人,采用叠堆型压电陶瓷驱动器。1997年,Denso公司进行了改进,以四层双压电膜驱动器取代叠堆压电驱动器。驱动机构由弹性支撑夹、叠堆型压电陶瓷驱动器及惯性质量块组成,长17毫米,直径8毫米,质量1.6克。
(二)无线药丸式内窥镜系统
无线药丸式内窥镜又称胶囊式内窥镜(Capsule Endoscope),它是内窥镜技术的突破,从整体结构上以药丸式取代了传统的线缆插入式,可以吞服的方式进入消化道,实现了真正的无创诊疗,同时呕可以实时观察病人消化道图象,大大拓展了全消化道检查的范围和视野。在无线内窥镜系统研究方面,国外已有以色列、日本、德国、法国、韩国等国家都在投入巨资进行研发。最著名的就是以色列Given Imagimg公司2001年5月推出的一种称为M2A的无线电子药丸(无线肠胃检查药丸),直径11毫米,长26毫米,重3.7克,视野140度,放大倍率1:8,最小分辨率小于0.1毫米。内部包括微型CMOS图像传感器,专用无线通讯芯片,照明白光LED,氧化银电池等,如图所示。已于2001年8月获得美国FDA认证。
1
1功率因数校正技术和无源无耗缓冲电路具有正弦波输入电流的单相输入个功率电感因数校正电路在开关电源中的使用越来越广泛,图2所示为升压功率因数校正和无源无耗缓冲电路。图2 功率因数校正和新型的无源无耗缓 功率电感就其本质而言,独立冗余磁盘阵列 (RAID) 系统是专为在面对恶劣环境时保存数据而设计。电源故障就是一个例子,它会威胁到临时存储在易失性存储器之中的数据。为了保护这些数据,许多系统采用了 AX6066是一个输出功率在12瓦到65瓦之间,具有原边反馈的转换器。AX6066适用于AC/DC电源的应用,可以满足无负载情况下交流线需要低功耗并且具有高的平均工作效率的应用要求。该芯片可以控制转
上一篇: 基于XR16L78x的多串口扩展方案优势分析
下一篇:功率电感器
1/2 1 2 下一页 尾页 |