0 引言 电动机及机械动力装置差模电感器旋转轴的转矩一转速特性是电动机及机械动力装置的一项重要参数,转矩转速特性曲线的形状及曲线中的起动转矩、最小转矩、最大转矩等参数,往往是衡量一台电动机或机械动力装置能否顺利起动和稳定运行的重要指标,因此,研制一种数字式、高精度、便携式的转矩转速测量仪器,具有非常现实的意义。 传统的旋转动力系统转矩测试,通常是采用电阻应变桥来检测转矩信隔离电感器号并借助于导电滑环来实现电阻应变桥能源的输入及应变信号的输出,但是,由于被测轴在高速旋转时会产生颤振,使接触点处的接触电阻发生变化,从而使测量误差增大。此外,导电滑环属于摩擦接触,也不可避免地存在磨损及发热,因而限制了旋转轴的转速及导电滑环的使用寿命。 为了更好地测量电机的输出转矩和转速,控制和调整电机,本文选用JN338数字式转矩转速传感器来进行转矩的测量,并以数字量的形式送入以AT89C52单片机为核心构成的测试系统。由于JN338传感器采用两组带间隙的特殊环形旋转变压器来承担应变桥能源输入及信号输出任务,从而实现能源及信号的无接触传递,因此提高了转矩测量的精度及可靠性。此外,该传感器还可同时实现旋转轴转速的测量,并方便地计算出轴的输出功率,因此,利用该传感器可实现转矩、转速及轴功率的多参数输出。本测量仪还可完成转矩、转速、轴输出功率的测量及报警值设定,测量周期设定及传感器调零设定,同时还可将测试数据通过RS232口传送到上位计算机,以实现测量数据的处理、分析和对比。 1 转矩转速测量原理 用JN338数字转矩转速传感器对转矩进行测量,可实现转矩信号的传递,而与旋转无关,也与转速大小和旋转方向无关。该传感器既可以测量静态转矩,又可以测量动态转矩,它无需反复调零即可连续测量正反转矩,并可高速长时间运行,而且检测精度高、稳定性好、抗干扰能力强。此外,传感器的输出信号以频率量给出,也便于和微处理器、单片机进行接口。 1.1 转矩测量 JN338转矩传感器的检测敏感组件是电阻应变桥。该应变桥可以通过应变胶将专用的测扭应变片粘贴在被测弹性轴上,从而组成应变电桥,这样,只要向应变电桥提供电源,即可测得该弹性轴受扭的电信号,然后将该应变信号放大,再经过压/频转换变成与扭应变成正比的频率信号。传感器的能源输入及信号输出是由两组带间隙的特殊环形旋转变压器承担的,因此,可实现能源及信号的无接触传递。该应变传感器的测量原理如图1所示。
由图1可见,该传感器是在一段特制的弹性轴上粘贴专用的测扭应变片并电感生产组成电桥,以形成基础扭矩传感器,然后在轴上再固定能源环形旋转变压器的次级线圈、轴上印刷电路板和信号环旋转变压器的初级线圈。电路板上则包含整流稳压电源、仪表放大电路及V/F变换电路。在传感器的外壳上固定着激磁电路、能源环形旋转变压器的初级线圈、信号环形变压器的次级线圈及信号处理电路。 该传感器电路在工作时,通常由外部电源向传感器提供±15V电源,激磁电路中的晶体振荡器产生的400 Hz的方波,经过TDA2003功率放大后,即可作为交流激磁功率电源,然后通过能源环形旋转变压器从静止的初级线圈T大电流电感1传递至旋转的次级线圈T2,将得到的交流电源通过轴上的整流、滤波电路处理后变成±5 V的直流电源。再将该电源作为运算放大器AD822的工作电源,并由基准电源AD589与双运放AD822组成的高精度稳压后,便可产生±4.5V的精密直流电源。该电源既可作为应变电桥的电源,又可作为仪表放大器及V/F转换器的工作电源。而当弹性轴受扭时,应变桥检测到的mV级应变信号通过仪表放大器AD620将其放大成1.5 V±1 V的强信号电感生产厂家,再通过V/F转换器LM33l变换成频率信号。此信号可通过信号环形旋转变压器,从旋转轴传递至静止的次级线圈,再经过传感器外壳上的信号处理电路进行滤波、整形,即可得到与弹性轴承受的扭矩成正比的频率信号输出。 JN338转矩传感器信号输出形式如下: 零转矩:10 kHz±50 Hz; 正向旋转满量程:15 kHz±50 Hz; 反向旋转满量程:5 kHz±50 Hz; 信号幅值:0~8V;1
导读: 电感是电子电路阻止电流改变的一种性质。注意“改变”一词的物理意义,这点非常重要,有点像力学中的惯性。一个电感器被用在磁场中储存能量,你会发现这个现象非常重要。电感是电子电路阻止电流改变的一种 电感是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,贴片电感能够被充电,并向器件进行放电。为尽量减少阻抗,电感要尽量靠近负载器件的供电电源管脚和地管脚 负载的变压器式电抗器控制系统的设计负载可控的变压器式可调电抗器能实现电感的快速、连续调节,其控制量与电感的线性度好,同时产生较小的谐波【l】。因而在很多领域都有应用1
上一篇: 温度采集与控制系统的设计
下一篇:功率电感器
1/3 1 2 3 下一页 尾页 |