| RSS
深圳电器感厂家
您当前的位置:电感器制造商 > 行业动态

LED材料特性检测技术——PL技术

来源:    作者:     发布时间:2015-05-15 06:47:11     点击数:

前言

  近年来,由于白光LED无论在发光效率、功耗、寿命和环保等方面都具备传统光源无法比拟的优势,使得白光LED逐渐取代白炽灯泡和日一体电感光灯,又随着各国政府纷纷宣布并提出禁用白炽灯泡的时间表,更加加速了这个趋势。

  以白光LED的产生的机制可分为叁种如图1所示,(a)由日亚化工所提出的将蓝光磊芯片再加上Nd-YAG萤光体转换为白光LED[1,2]。(b)用紫光磊芯片加上RGB叁色萤光体转换为白光LED,目前仍在实验阶段。[3-5](c)使用RGB叁种磊芯片混成白光LED[6,7]。目前市面上产品多以蓝光磊芯片再加上Nd-YAG萤光体转换为白光LED为主,所以如何提高蓝光磊芯片的发光效率对白光LED的发展而言至关重要。

  

  图1 白光LED的产生的机制(a)Blue LED+YAG Phosphor(b)UV LED+RGB Phosphor(c)RGB LED

  半导体LED的发光效率取决于材料本身的特性,当LED注入额外载子后,额外载子的复合分为辐射复合(能带插件电感的额外载子复合后发出光)与非辐射复合(声子复合放出热与欧杰复合)两个机制,另外能带间的缺陷能阶亦会捕捉额外载子,降低额外载子复合的机会。因此近几年来许多研究团队为了研究如何提高LED的发光效率,纷纷借由萤光量测技术分析探讨其发光机制。

  萤光发光机制

  萤光是一种电磁辐射放射的现象。对于任何材料而言,入射光子能量等于或是超过能带时,便会激发价电带电子跨过能带到达导电带,当激发态的电子由导电带回到价电带时便会产生辐射放射,产生过程主要分为叁个阶段如图2所示。(a)为激发,额外载子的产生与激发(b)为能量释放和复合,激发态的额外载子之能量释放并复合(c)为萤光产生,复合后产生的萤光光子讯号。

  

  图2 萤光产生过程

  其中产生萤光之方式大致分为两类,分别为以高于或等于能隙能量之光子照射样品来产生额外载子,或以电子注入之方式增加载子浓度以增加萤光光子产生之机率,借此提升量测萤光讯号之强度。此两类方式分别称为光激发萤光(photoluminescence,以下简称PL)及电激发萤光,LED的发光塬理便为电激发萤光,然而电激发萤光的量测必绕行电感器须嵌入电极,这就表示在嵌入电极之前的制程中必须使用光激发萤光做量测。

  自从雷射可用来提供足够的功率激发讯号后[8],入射光便开始使用雷射光源。当激发态电子回到基态时,会产生一个光子,也可能产生许多的声子。假设使用的光源为连续波,以此激发的萤光,可当作稳态,试片受到光源照射而连续地发出萤光[9],雷射光谱与激发之萤光光谱如图 3. 。

  

  图3 雷射与激发之萤光光谱图

  如图4由Alexander Jablonski所提出的Jablonski energy diagram [10]中可知,入射光的吸收和入射光子的波长亦即能量有关,故材料的吸收和入射光源的波长有关。

  

  图4共模电感器 Jablonski energy diagram [10]

  当样品吸收了入射光后将电子激发到更高的能态,经过一段时间,电子将释放能量至较低的能态。杂质与缺陷会在能隙之中形成各种能阶,而其对应的能量会由辐射复合过程产生放射如光激发萤光,或者是经由非辐射复合过程产生吸收[8][11],如声子放射,缺陷捕捉,或欧杰效应[12]。

  除了上述中导电带与价电带等能带转换会发出萤光,缺陷也会造成萤光的产生,如图5所示。其中EC、EV和ED分别为导电带、价电带与缺陷能带,其中,缺陷能带分布在EC与EV之间,位置与数量视材料品质而定,图 5中(a电感器英文)为能带间的电子电洞对复合,(b)和(c)都属于缺陷的复合,(b)为导电带的电子被能带间的缺陷捕捉,(c)为缺陷捕获的电子与价电带电动复合,发出的萤光波段视电子与电洞复合前能带的距离而定。1

白光LED广泛用于小型液晶显示器(LCD)面板及键盘背光以及指示器应用。高亮度LED则用于手机和数码相机的闪光光源。这些应用需要优化的驱动器解决方案,能够延长电池使用时间、减小印制电路板(PCB)面积

实例设计 “表 1”所示规范为设计比较的基础。第一个设计使用一个耦合电感,而第二个则使用两个非耦合电感。一体成型电感使用一个耦合电感的设计是典型的 64W 输出功率车载输入电压范围。方程式1表明,耦

 LED在手机的LCD背光中的广泛应用已经有若干年了。如今其应用正扩展到大面积的LCD应用,包括袖珍PC、汽车导航GPS、数字相框、可携式DVD乃至笔记型计算机。LED也正开始取代家用的、汽车和其它


上一篇: 分布式图像拼接控制器技术解析
下一篇:功率电感器
来顶一下
返回首页
返回首页
相关文章
推荐资讯
电感数字转换器
电感数字转换器
相关文章
栏目更新
栏目热门