| RSS
深圳电器感厂家
您当前的位置:电感器制造商 > 行业动态

一种用于定位的低功耗有源RFID标签的设计方案

来源:    作者:     发布时间:2015-05-18 08:22:14     点击数:

3.1 软件流程

本系统属于双向通信系统,标签在发送数据前处于监听状态,nRF24L01的接收功能被打开,同时MSP430F2012处于LPM3模式,直至接收到阅读器广播的“开始”

指令,并通过中断将MSP430F2012唤醒。

MSP430F2012被中断唤醒后开始判断指令是否正确,如果正确则进入正常发送周期,否则返回LPM3模式。

考虑到实时定位的需要,系统不能像一般的RFID标签那样仅仅进行有限次验证,本系统采用等间隔持续发送的模式,便于阅读器实时监测目标位置,系统设定的正常发送周期为500ms,由MSP430F2012的Timer_A定时,500ms定时开始后,标签ID通过SPI发送到FIFO,nRF24L01采用了增强型ShockBurstTM模式,发送失败则会继续重发,标签ID发送完毕后,MSP430F2012判断定时器是否超时,一旦超时则进入下个塑封电感器发送周期,否则处于等待状态直至超时。当阅读器停止广播“开始”指令,MSP430F2012重新进入LPM3模式以降低功耗。系统完整流程如图3所示。

3.2 防冲突设计

nRF24L01自带载波检测功能,在发送数据前先转入接收模式进行监听,确认要传输的频率通道未被占用才发送数据,利用此功能可实现简单的硬件防冲突。

考虑到本系统采用了500ms的统一发送间隔,在被定位目标众多的场合有可能发生识别冲突,电感计算因此需要在程序中合理的增加防冲突算法。ALOHA算法主要用于有源标签,其原理就是,一旦信源发生数据包碰撞,就让信源随机延时后再次发送数据。考虑到程序的复杂性势必引起处理时间的增加,也会带来额外的能耗,本系统采用了较为简单的纯ALOHA算法,即在每个500ms计时周期内随机发送标签ID,这就需要在程序中插入一个随机延时,延时时长的选择通过一个随机值函数来实现,随机延时范围为0~300ms.这种简单的防冲突算法既简化了指令,又能大幅降低冲突概率。

另外,nRF24L01传输速率为1Mbps或2Mbps,单次发送一个数据包,单个数据包最大32bytes,假设标签ID为32bytes,以2Mbps速率发送一次ID的信号宽度(传输时间)约为100~150μs,相对于500ms的整个定时周期而言微乎其微,但仍有可能出现发送饱和的状态,这时可以适当的延长计时周期以增加信道容量。较快的传输速率有助于移动目标的识别和定位,而较短的数据长度也能显着提高标签基于随机延时的防冲突能力,因此尽可能将标签ID的长度限制在32bytes以内。

3.3 部分程序代码

3.3.1 单字节SPI发送/接收函数

3.3.2 根据命令字读/写接收(发送)数据包

工字电感

4.测试结果

对于R F I D系统而言,最重要的参数就是读取距离[7]和有效读取率。本次实验测试设备为标签3枚,阅读器一台,PC一台,阅读器基于MSP430F149和nRF24L01芯片设计,并通过RS232串口与PC进行通信。测试中,分别将3枚标签置于距离阅读器1 5 m、3 0 m、4 5 m处,便签I D分别为AABBCCDDFFFFFF01、A绕行电感ABBCCDDFFFFFF02、AABBCCDDFFFFFF03,每枚标签进行一小时(约7200次)连续读取测试。测试界面如图4所塑封电感器示。

从表1所示测试结果看,3 0 m以内为标签正常读取距离,可满足一般的室内应用,距离为45m时读取率则显着下降。由于天线的设计对系统性能有较大影响,通过改进标签的天线以获取较大输出功率,改进阅读器端天线接收灵敏度也能显着提高系统性能。

5.结束语

本文对基于MSP430F2012和nRF24L01的有源RFID标签的设计进行了详细的介绍。对2款芯片的低功耗性能进行了分析并提出了自己的低功耗设计方案;结合了RFID定位的特点,介绍了有别于一般以识别为主要目的的标签的设计方案,分析了其软件设计流程;针对一般空间内被识别目标众多且常处于移动状态的特点,介绍了系统的防冲突能力。整个方案的设计体现出了电路简单,尺寸小,功耗低,通过良好匹配的天线通信距离可达几十米,如需进行远距离RFID测量或定位,可在硬件上增加数字功放电路,通信距离可达500米以上。可以满足多种行业对于一般小范围空间内的定位需求。 1

1. 忘记考虑边界和故障模式错误总会发生,如果LED对地开路或短路,驱动器应该如何处理这个问题?对于电感升压驱动器而言,如果LED串开路,输出就会激增,因为恒定电流会对输出电容进行充电,从而需要过压保

通信系统的单片集成具有降低成本、功耗、面积、实验费用,增加可靠性、精度高和设计灵活性的好处,现代半导体技术的快速发展对通信系统的集成化起到了巨大的推动作用。尽管如此

SH_CP:数据输入控制端,在每个SH_CP的上升沿, SDA口上的数据移入寄存器, 在 SH_CP的第 9个上升沿, 数据开始从 QS移出。ST_CP:数据置入锁存器控制端。Q0~Q7:数据并行输出


上一篇: 数字控制在电源应用中的特点
下一篇:功率电感器
来顶一下
返回首页
返回首页
相关文章
推荐资讯
电感数字转换器
电感数字转换器
相关文章
栏目更新
栏目热门