| RSS
深圳电器感厂家
您当前的位置:电感器制造商 > 技术知识

增强硅中掺铒发光强度的途径研究

来源:    作者:     发布时间:2015-04-19 08:12:44     点击数:

摘要:硅在微电子学领域有着极其广泛的应用,但它是一种间接能隙半导体,发光器件领域是它的缺项。利用在硅中掺入铒发光中心,研制出一种新的发光二极管(Si:Er LED),它的发光波长为1.54 μm,恰好满足石英光纤通信的要求。对掺铒硅的电学特性、材料性能、发光机理等进行了总结,发现制约掺铒硅实用化的一些问题,在此基础上得出提高其发光效率的途径,并介绍了掺铒硅器件的行为和未来展望。
关键词:掺铒硅;发光二极管;发光效率;石英光纤通信

在微电子应用中起主导作用的Si,在光子学领域的表现却不尽人意。这是由于Si属间接带隙结构,使其不能有效发光,因而被认为是不适合在光电子领域中应用的。人们想了很多办法以克服它的这个缺陷。其中Si中稀土掺杂的方法为人们所关注。稀土Er3+离子第一激发态到基态的跃迁发出的光波长为1.54/μm,正好对应于标准石英光纤的最小吸收窗口。因此掺铒硅在光通信的应用方面具有极大的潜力。掺铒硅在77 K温度下的PL和EL首先在1983~1985年被Ennen等得到,从而引发了大规模的研究,旨在开发掺铒硅系统的结构、电学和光学性能,并将其扩展到室温工作。然而,直到1993年的研究表明,制作室温下高效发光的掺铒硅器件是不现实的。主要有以下几个原因:
(1)Er在Si中的固溶度低(1 300℃时约1×1016cm-3),阻止了高浓度Er的掺入;
(2)强的非辐射衰减机制,使掺铒硅发光强度从77 K至室温时衰减了3个数量级,室温下的发光几乎测不到;
(3)Er在Si中的辐射寿命为1 ms量级,因而不可能直接调制输出频率高于1 kHz的光。
1993年后,由于高浓度掺铒硅的突破,获得了较详实的理论和实验结果,因而掺铒硅再一次引起了全世界的关注。虽然掺铒硅中尚未获得百分级效率的LEDs与激光,但室温下己实现较强的EL,并己将它们集成为Si基光电子和微电子器件的光源。本文总结了掺铒硅的材料性能、发光机理、以及掺饵硅LED器件的行为和未来展望。

1 掺铒硅的发光机理
1.1 Si中Er的4f电子结构
Er原子的价电子组态为4f126s2。对于Si中的Er,理论计算表明,其+3价态比+2价态更稳定,即一个4f电子被提升到5d轨道上,形成4f116s25d1组态。由Hund定则决定4f11的基态光谱项是4I。自旋一轨道相互作用将4I项分裂成4个多重态(J=15/2,13/2,11/2,9/2)。从第一激发态4I13/2到基态4I15/2的能量间距为0.81 eV左右,但是它们之间的电偶极跃迁是禁戒的(电四极矩和磁偶极矩跃迁几率更小),当Er掺入基质时,周电感器的功能和用途围晶体场的作用将自旋-轨道多重态分裂成-系列Stark能级,这时选择定则可能被破坏,发生辐射跃迁,产生一系列丰富的谱线,谱线的个数和强度同发光中心所处的晶体场密切相关。当晶体场具有Td对称性时,基态差模电感器4I15/2分裂成两个双重态Γ6,Γ7和3模压电感器个四重态Γ8;第一激发态4I13/2分裂成一个Γ6,两个Γ7和两个Γ8。当晶体场不具有立方对称性时,基态4I15/2和第一激发态4I13/2的Γ8分裂成两个Kramer双重态。上述过程如图1所示。

a.jpg


图1中(a)为电子一电子相互作用,基态项4I;(b)为自旋-轨道相互作用,产生J=15/2,13/2,11/2,9/2多重态;(c)中Td为晶体场中的Stark能级,对4I15/2的分裂,从上到下分别为Γ8,Γ7,Γ8,Γ8和Γ6;(d)为非立方对称性晶体场中的分裂。
1.2 掺铒硅的发光机理
一般认为,掺铒硅的发光来源于Er离子的4f能级间的跃迁,如图2所示。在解释具体的发光机理时,必须说明Er离子在硅中的激发和退激发过程,并以此来解释实验现象。对机理的了解有助于从实验上来提高掺铒硅的发光效率,克服其温度猝灭和提高发光的调制频率。

b.jpg


发光的激发和退激发过程:先讨论激发过程。一般来说,Er离子被激发可以有光子激发和电子激发两种可能性。光子激发是入射光子直接将一体电感Er的4f基态能级上的电子激发到较高的能级上去,但是,由于Er3+的光吸收截面非常小,只有1×10-20cm2,所以对有效的光致发光和电致发光(EL)来说,光子激发不是主要的。电子激发又称载流子中介激发。它可以有两种方式,如图3所示。图3(a)是激子复合激发,在掺铒硅的PL和电感器生产P-N结正向偏压作用下的EL都属于这一种机理。其过程为:由光照或由P-N结电注入在Si中产生电子空穴对,然后通过受陷于一个与Er相关的位于禁带中的能级而成为束缚激子,激子复合后产生能量(图中过程1),该能量从半导体转移到Er的4f壳层(过程2),使4f电子从4I15/2基态激发到第一激发态4I13/2(过程3)。另一种电子激发过程称为载流子碰撞激发,如图3(b)所示。它发生在P-N结反向偏压下的EL中。 P-N结势垒区中的载流子受到强电场的作用而加速成为热载流子,处于导带内高能量状态上,当它的动能大于0.81 eV时,就有可能通过与晶格碰撞而失去能量(过程1),这部分能量转移给Er(过程2),激发其4f电子(过程3)。 1

在无线系统中,功放(PA)线性度和效率常是必须权衡的两个参数。工程师都在寻找一种有效而灵活的基于Volterra的自适应预失真技术,可用于实现宽带RF功放的高线性度。本文将概述不同数字预失真技术,介绍

产品描述:非晶合金油浸式配电变压器室我公司根据市场需要及时推出的新一代节能、环保、免维护产品,可取代硅钢片铁芯配电变压器,用于户外或户内的配电网络系统。由于其突出的节能特点,受到了广大用户的欢迎。其性

1.插入损耗特性: 共模扼流圈插入损耗特性是由其在干扰频谱一体成型电感器厂下的阻抗特性来衡量的。当频率范围为0.01~1MHZ时,阻抗主要取决于线圈电感L。当频率范围为1~10MHZ时,阻抗主要


上一篇: 超快速IV测试技术-半导体器件特性测试的变革
下一篇:功率电感器
来顶一下
返回首页
返回首页
相关文章
推荐资讯
电感数字转换器
电感数字转换器
相关文章
栏目更新
栏目热门