您当前的位置:电感器制造商 > 行业动态


时间:2014-12-13 01:44:36  来源:扁平线圈电感厂家   点击:

温控风扇电路--Temperature-controlled Fan

Gradually increases speed as temperature increases
Widely adjustable temperature range


P1_____________22K Linear Potentiometer (See Notes)

R1_____________15K @ 20°C n.t.c. Thermistor (See Notes)
R2____________100K 1/4W Resistor
R3,R6__________10K 1/4W Resistors
R4,R5__________22K 1/4W Resistors
R7____________100R 1/4W Resistor
R8____________470R 1/4W Resistor
R9_____________33K 4W Resistor

C1_____________10nF 63V Polyester Capacitor

D1________BZX79C18 18V 500mW Zener Diode
D2_________TIC106D 400V 5A SCR
D3-D6_______1N4007 1000V 1A Diodes

Q1,Q2________BC327 45V 800mA PNP Transistors
Q2___________BC337 45V 800mA NPN Transistor

SK1__________Female Mains socket

PL1__________Male Mains plug & cable

Device purpose:

This circuit adopt a rather old design technique as its purpose is to vary the speed of a fan related to temperature with a minimum parts counting and avoiding the use of special-purpose ICs, often difficult to obtain.

Circuit operation:

R3-R4 and P1-R1 are wired as a Wheatstone bridge in which R3-R4 generates a fixed two-thirds-supply "reference" voltage, P1-R1 generates a temperature-sensitive "variable" voltage, and Q1 is used as a bridge balance detector.
P1 is adjusted so that the "reference" and "variable" voltages are equal at a temperature just below t绕行电感器he required trigger value, and under this condition Q1 Base and Emitter are at equal voltages and Q1 is cut off. When the R1 temperature goes above this "balance" value the P1-R1 voltage falls below the "reference" value, so Q1 becomes forward biased, pulse-charging C1.
This occurs because the whole circuit is supplied by a 100Hz half-wave voltage obtained from mains supply by means of D3-D6 diode bridge without a smoothing capacitor and fixed to 18V by电感规格 R9 and Zener diode D1. Therefore the 18V supply of the circuit is not true DC but has a rather trapezoidal shape. C1 provides a variable phase-delay pulse-train related to temperature and s模压电感器ynchronous with the mains supply "zero voltage" point of each half cycle, thus producing minimal switching RFI from the SCR. Q2 and Q3 form a trigger device, generating a short pulse suitable to drive the SCR.


The circuit is designed for 230Vac operation. If your ac mains is rated at about 115V, you can change R9 value to 15K 2W. No other changes are required.

Circuit operation can be reversed, i.e. the fan increases its speed as temperature decreases, by simply transposing R1 and P1 positions. This mode of operation is useful in controlling a hot air flu塑封电感x, e.g. using heaters.

Thermistor value is not critical: I tried also 10K and 22K with good results.

In this circuit, if R1 and Q1 are not mounted in the same environment, the precise trigger points are subject to slight variation with changes in Q1 temperature, due to the temperature dependence of its Base-Emitter junction characteristics. This circuit is thus not suitable for use in precision applications, unless Q1 and R1 operate at equal temperatures.

The temperature / speed-increase ratio can be varied changing C1 value. The lower the C1 value the steeper the temperature / speed-increase ratio curve and vice-versa.

Warning! The circuit is connected to 230Vac mains, then so一体成型电感器me parts in the circuit board are subjected to lethal potential! Avoid touching the circuit when plugged and enclose it in a plastic box.



从数字信号处理的理论出发,介绍实现的数字滤波、功率因数的计算和谐波谱分析等电力网无功补偿控制器的基本功能,及基于80C196KC MCU的电力网无功补偿控制器。关键词:数字信号处理;数字滤波;无功补偿


上一篇: 红外发光二极管的特性和应用