摘要:利用TI公司的数字信号处理芯片TMS320F2808强大的运算能力和快速实时处理能力,解决了矢量控制的复杂控制算法难以实现一体成型电感器的问题,完成了矢量控制变频调速系统的硬件及软件设计。实验结果表明,本系统具有良好的稳定性、动态特性,以及快速的故障处理功能。
关键词:矢量控制;异步电机;TMS320F2808
引言
矢量控制(vector control)是在20世纪70年代出现的一种高性能的控制技术,其提高了交流调速系统的静态和动态性能。矢量控制具有调速范围宽、转矩响应快等特点,但是其涉及众多的异步电机参数,需要复杂的旋转变换计算。随着电力电子器件及计算机技术的迅猛发展,各种高性能芯片的问世解决了高性能矢量控制方法繁琐的运算问题,使矢量控制技术得到了更广泛的应用与发展。
本文根据矢量控制的基本原理,采用TI公司具有强大运算能力和快速实时处理能力的数字处理芯片TMS320F2808作为控制芯片,设计了一个全数字化矢量控制硬件系统,并给出了保护电路、电流检测电路、转速检测电路,以及部分程序流程。
1 矢量控制基本原理
矢量控制的基本理论是在三相交流电动机上模拟直流电动机转矩控制的规律,应用坐标变换Clarke变换把三相交流系统转换为两相交流系统,然后通过Park变换把两相交流系统转换为旋转的直流系统。在转子磁场定向坐标上,将定子电流矢量分解成产生磁通的励磁分量和产生电磁转矩的转矩分量,并使两分量互相垂直,实现了定子电流励磁分量与转矩分量的解耦,达到对异步电机的磁链和转矩分别控制的目的,从而获得与直流电机调速系统同样优良的静态、动态调速性能。其基本原理如图1所示。
2 系统硬件电路设计
2.1 主回路
本系统采用主回路为电压型的“交-直-交”变频结构,主要由整流电路、滤波电路以及逆变电路组成。为了使主回路结构简单并且便于器件的更换和维修,本设计采用了模块化的结构设计方案。060一体成型电感3电感图2为基于TMS320F2808的异步电机矢量控制系统的结构框图。
本设计中采用了三菱公司的整流逆变制动模块CP10TD1-24A。其特点是:采用LPT—CSTBTTM硅片技术和整流、逆变、制动、NTC温度检测一体化压注模小型封装,饱和压降低,模块热阻小,内置NTC温度传感器等。
2.2 控制回路
由于矢量控制系统的计算量较大,所以控制回路采用TI公司的DSP芯片TMS320F2808及其外围电路,来实现矢量控制核心算法、相关电压电流的检测处理等功能。
2.2.1 供电电路
图3为供电电路。为了提高控制系统的稳定性和延长器件的使用寿命,本设计采用高性能稳压芯片、低压差电压调节器LM1117,为TM工字电感S 320F2808提供可靠的供电电源。分别选用3.3 V和1.8 V的固定电压输出芯片为DSP供电,其输出电流可达800 mA,输出电压的精度在±1%以内,并具有电流限制和热保护功能。
2.2.2 JTAG仿真调试接口电路绕行电感器
为了便于调速系统与上位机相连接,实现仿真器对DSP的访问并进行矢量控制调速程序的仿真与调试,JTAG仿真调试接口电路是变频调速设计中必不可少的。具体电路图如图4所示。
2.2.3 过、欠压保护电路
为了提高系统的可靠性,更好地保护逆变器元件和异步电机,调速系统应设置一套准确的保护措施以防止各种故障的发生。本文采用直流母线电压的过、欠压保护电路,如图5所示。当检测出的直流母线电压超过或低于预定电压时就会关断所有控制信号,从而起到保护的作用。其中,LM393为双电压比较器。
2.3 系统检测电路1
什么是大电流扁平电感线圈: 扁平电感线圈即一种扁平式线圈的电感器,由一线圈部,所述线圈部两端延伸的接脚部,一由铁粉压铸而成的导磁座及盖体所构成;其中,线圈部为一扁平圈绕式导电线材,其两端接脚部朝与 在脉冲功率技术研究方面,俄罗斯一直处于世界领先地位。其代表性产品包括以Tesla变压器技术为核心的Sinus系列电容储能型脉冲功率源和以电感储能技术为主的脉冲功率源两种.俄 传统的工厂生产线调度系统通信都是通过有线电话实现的。这种有线连接方式存在着无法满足移动通信需求,线缆设施易受损,且布设和维护成本高等诸多问题。基于IEEE 802.11协议的无线局域网接入技术拥有广泛
上一篇: 常见车型遥控钥匙匹配方法
下一篇:功率电感器
1/2 1 2 下一页 尾页 |